12 research outputs found

    Prediction of the intention to use a smartwatch : a comparative approach using machine learning and partial least squares structural equation modeling

    Get PDF
    This study makes use of a cohesive yet innovative research model to identify the determinants of the adoption of smart watches using constructs from the Technology Acceptance Model (TAM) and constructs of smartwatches, including effectiveness, content richness, and personal innovativeness. The chief objective of the study was to encourage the use of smartwatches for medical purposes so that the role of doctors can be made more effective and to facilitate access to patient records. Our conceptual framework highlights the association of TAM constructs (i.e., perceived usefulness and perceived ease of use) with the content richness, the construct of user satisfaction, and innovativeness. To measure the effectiveness of the smartwatch, an external factor based on the flow theory was added, which emphasizes the control over the smartwatch and the degree of involvement. The study employs data from 385 respondents involved in the field of medicine, such as doctors, patients, and nurses. The data were gathered through a survey and used for evaluation of the research model using partial least squares structural equation modeling (PLS-SEM) and machine learning (ML) models. The significance and performance of factors impacting THE adoption of smartwatches were also identified using Importance-Performance Map Analysis (IPMA). User satisfaction is the most important predictor of intention to adopt a medical smartwatch according to the ML and IPMA analyses. The fitting of the structural equation model to the sample showed a high dependence of user satisfaction on perceived usefulness and perceived ease of use. Furthermore, two critical factors, innovativeness and content richness, are demonstrated to enhance perceived usefulness. However, one should consider that perceived usefulness or behavioral intention could not be determined based on perceived ease of use. In general, the findings suggest that smartwatch usage could become critically important in the medical field as a mediator that allows doctors, patients, and other users to access essential information

    The effectiveness of online platforms after the pandemic : will face-to-face classes affect students’ perception of their Behavioural Intention (BIU) to use online platforms?

    Get PDF
    The purpose of this study is to investigate students’ intention to continue using online learning platforms during face-to-face traditional classes in a way that is parallel to their usage during online virtual classes (during the pandemic). This investigation of students’ intention is based on a conceptual model that uses newly used external factors in addition to the technology acceptance model (TAM) contrasts; hence, it takes into consideration users’ satisfaction, the external factor of information richness (IR) and the quality of the educational system and information disseminated. The participants were 768 university students who have experienced the teaching environments of both traditional face-to-face classes and online classes during the pandemic. A structural equation modelling (SEM) test was conducted to analyse the independent variables, including the users’ situation awareness (SA), perceived ease of use, perceived usefulness, satisfaction, IR, education system quality and information quality. An online questionnaire was used to explore students’ perceptions of their intention to use online platforms accessibly in a face-to-face learning environment. The results showed that (a) students prefer online platforms that have a higher level of content richness, to be able to implement the three dimensions of users’ situation awareness (perception, comprehension and projection); (b) there were significant effects of TAM constructs on students’ satisfaction and acceptance; (c) students are in favour of using a learning platform that is characterised by a high level of educational system quality and information quality and (d) students with a higher level of satisfaction have a more positive attitude in their willingness to use the online learning system

    Text Mining the History of Medicine

    Get PDF
    Historical text archives constitute a rich and diverse source of information, which is becoming increasingly readily accessible, due to large-scale digitisation efforts. However, it can be difficult for researchers to explore and search such large volumes of data in an efficient manner. Text mining (TM) methods can help, through their ability to recognise various types of semantic information automatically, e.g., instances of concepts (places, medical conditions, drugs, etc.), synonyms/variant forms of concepts, and relationships holding between concepts (which drugs are used to treat which medical conditions, etc.). TM analysis allows search systems to incorporate functionality such as automatic suggestions of synonyms of user-entered query terms, exploration of different concepts mentioned within search results or isolation of documents in which concepts are related in specific ways. However, applying TM methods to historical text can be challenging, according to differences and evolutions in vocabulary, terminology, language structure and style, compared to more modern text. In this article, we present our efforts to overcome the various challenges faced in the semantic analysis of published historical medical text dating back to the mid 19th century. Firstly, we used evidence from diverse historical medical documents from different periods to develop new resources that provide accounts of the multiple, evolving ways in which concepts, their variants and relationships amongst them may be expressed. These resources were employed to support the development of a modular processing pipeline of TM tools for the robust detection of semantic information in historical medical documents with varying characteristics. We applied the pipeline to two large-scale medical document archives covering wide temporal ranges as the basis for the development of a publicly accessible semantically-oriented search system. The novel resources are available for research purposes, while the processing pipeline and its modules may be used and configured within the Argo TM platform

    Building a semantically annotated corpus for congestive heart and renal failure from clinical records and the literature

    No full text
    Narrative information in Electronic Health Records (EHRs) and literature articles contains a wealth of clinical information about treatment, diagnosis, medication and family history. This often includes detailed phenotype information for specific diseases, which in turn can help to identify risk factors and thus determine the susceptibility of different patients. Such information can help to improve healthcare applications, including Clinical Decision Support Systems (CDS). Clinical text mining (TM) tools can provide efficient automated means to extract and integrate vital information hidden within the vast volumes of available text. Development or adaptation of TM tools is reliant on the availability of annotated training corpora, although few such corpora exist for the clinical domain. In response, we have created a new annotated corpus (PhenoCHF), focussing on the identification of phenotype information for a specific clinical sub-domain, i.e., congestive heart failure (CHF). The corpus is unique in this domain, in its integration of information from both EHRs (300 discharge summaries) and literature articles (5 full-text papers). The annotation scheme, whose design was guided by a domain expert, includes both entities and relations pertinent to CHF. Two further domain experts performed the annotation, resulting in high quality annotation, with agreement rates up to 0.92 F-Score.

    A novel RBFNN-CNN model for speaker identification in stressful talking environments

    Get PDF
    Speaker identification systems perform almost ideally in neutral talking environments. However, these systems perform poorly in stressful talking environments. In this paper, we present an effective approach for enhancing the performance of speaker identification in stressful talking environments based on a novel radial basis function neural network-convolutional neural network (RBFNN-CNN) model. In this research, we applied our approach to two distinct speech databases: a local Arabic Emirati-accent dataset and a global English Speech Under Simulated and Actual Stress (SUSAS) corpus. To the best of our knowledge, this is the first work that addresses the use of an RBFNN-CNN model in speaker identification under stressful talking environments. Our speech identification models select the finest speech signal representation through the use of Mel-frequency cepstral coefficients (MFCCs) as a feature extraction method. A comparison among traditional classifiers such as support vector machine (SVM), multilayer perceptron (MLP), k-nearest neighbors algorithm (KNN) and deep learning models, such as convolutional neural network (CNN) and recurrent neural network (RNN), was conducted. The results of our experiments show that speaker identification performance in stressful environments based on the RBFNN-CNN model is higher than that with the classical and deep machine learning models
    corecore